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g Markov Decision Process

m  Markov Decision Process (MDP) is a mathematical framework for
modeling decision making in situations where outcome are partly
random and partly under the control of a decision maker.
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g Markov Decision Process (cont.)

m Definition
= A Markov Decision Process is a 5-tuple (S, 4, T, R, y)

. finite set of states

. finite set of actions

. transition probability

: reward function (or C : cost function)
. discount factor (0 <y < 1)

HE B B B =
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g Markov Decision Process (cont.)

m Deterministic MDP
m [f you select an action, then you can do this action with probability 1.

m  Nondeterministic MDP
m [f you select an action, then you can do this action with any probability.
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g Markov Decision Process (cont.)

= Goal
®m To find a “policy” for the decision maker

m A function it that specifies the action m(s) that the decision maker will
choose when in state s.

m The goal is to choose a policy m that will maximize some cumulative
function of the random rewards, typically the expected discount sum over a
potentially infinite horizon.

m(House)
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g Markov Decision Process (cont.)

m Solution Concept

m |If C belongs to an optimal path from A to B, then the sub-path Ato C and C
to B are also optimal.

m Therefore, all sub-path of an optimal path is optimal.

optimal optimal

A
v
A
v

Sogang University Internet Communication Control Lab.




g Markov Decision Process (cont.)

m Solution

®m Bellman’s Optimality Equation

V*(s) = z P(s,s’,n(s))(R(s,S’,n(s)) + yV*(s’))

m*(s) = argmax {z P(s,s’, a)(R(S, s',a) + yV*(s’))}

Can be implemented by linear programming or dynamic programming.
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g Markov Decision Process (cont.)

m  Solution Algorithms

m Value Iteration (VI)
m Also called Backward Induction.
m 7 function is not used.
m Computing V, = V; — --- until V converges

m Policy Iteration (PI)
m Policy Improvement Technique
m Given m defines a new policy m’ such that

a€eA

n'(s) = argmax {z P(s,s’,a)R(s,s’,a) + yz P(s,s’, a)V(s’)}
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g Limitation

m  Most of cases, computers do not know reward function until they really
do actions.
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To Overcome Limitation

m Reinforcement Learning

An area concerned with how an agent ought to take actions in an environment so as to
maximize some notion of reward.

The task of Reinforcement Learning (RL) is to use observed rewards to find an
optimal policy for the environment.

"'"[ Agent }

state reward action

“5.. | Environment ]*"—

Sogang University Internet Communication Control Lab.

yo®



g Reinforcement Learning

m  Kind of Reinforcement Learning

Q — Learning

Temporal Difference (TD) Learning
State-Action-Reward-State-Action (SARSA) Learning
Etc.
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g Q — Learning

m Q- Learning is a model-free reinforcement technique.

m  Can be used to find an optimal action policy for any given MDPs.

m Converges to an optimal policy in both deterministic and
nondeterministic MDPs.
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g Q — Learning (cont.)

m  Q function (nondeterministic)
m Define afunctionsQ* : S XA — R such that

Q*(s,a) = z P(s,s',a)R(s,s’,a) +vy Z P(s,s*,a)V*(s")

s'es s'es

m  Measure of how good to take an action a € A at state s € S if an optimal policy is
followed from the possible next state of s.
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@ Q — Learning Algorithm

1. Initialize Qy (s, a) arbitrarily

2. Repeat

3. Choose a; from s; using an exploratory policy ¢
4 Take action a;, observe r, s;,1

5 Update Q — value function such that

Qe+1(St,ar) « Q¢(sp,a) + [7” Ty mC?X Q:(Ser1,a) — Q(sy, at)]
6. t<t+1
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Q — Learning Algorithm (cont.)

m Learning rate (a)

m The learning rate determines to what extent the newly acquired information
will override the old information.

m A factor of 0 will make the agent not learn anything, while a factor of 1
would make the agent consider only the most recent information.

m Discount factor (y)
m The discount factor determines the importance of future rewards.

m A factor of 0 will make the agent "opportunistic™ by only considering
current rewards, while a factor approaching 1 will make it strive for a long-
term high reward.
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Exploratory Policy

m e-greedy policy

Attimet
(
with probability &,(s) = select action a € A with prob —
P PN PP 14
with probability 1 — &,(s) select an action in argmax Q,(s;, a )
\ a€A

% n.(s) IS number of visits to state s intime stept, 0 < c < 1

Note if
lim n;(s) = oo, tlim &(s) =0

t—oo

So that ¢, becomes more greedy selection rule with respect to Q; at t.
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g Exploratory Policy (cont.)

m Boltzmann Exploration — Exploitation rule
eTt (S)Qt (S,Cl)

arg) =
br(s) o eTe (990 (5b)

Where T, (s) is called temperature associated with s

Note if more T, (s) lower, ¢ (s) become uniform selection
if more T, (s) higher, ¢Z(s) become greedy selection with respect to
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g Q — Learning Example

A s start and our goal isend in B

¢ Orange location reward = -8
& White location reward =0
¢ Blue location reward = 8
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@ Q — Learning Example (cont.)

m States
1 2 3 4 5
6 7/ 8 9 10
11 12 13 14 15
16 17 18 19 20
m Actions

North (1), South({), East(—), West(«<)
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g Q — Learning Example (cont.)

m The Q(s, a) function

states
1 2 3 4 5 6 7 8 9 (10 (111213 (14 (15|16 |17 | 18| 19
T
l
actions
e
ﬁ
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@ Q — Learning Example (cont.)

Initialize Q (s, a) arbitrarily

Repeat
Choose a; from s; using an exploratory policy ¢
Take action a;, observe r, s;,1
Update Q — value function such that

Qe+1(St,ar) « Q¢(se,ar) + a [7" + Yy max Qe(Se41,ar) — Qe(sy, at)]
6. t<t+1

A
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@ Q — Learning Example (cont.)

m The Q(s, a) function

states

actions
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@ Q — Learning Example (cont.)

1. Initialize Qy (s, a) arbitrarily

2. Repeat

3. Choose a; from s; using an exploratory policy ¢,
4 Take action a;, observe r, s;,1

5 Update Q — value function such that

Qe+1(St,ar) « Q¢(se,ar) + a [7" Ty max Qe(Se41,ar) — Qe(sy, at)]
6. t<t+1
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@ Q — Learning Example (cont.)

m  An episode

Ty
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@ Q — Learning Example (cont.)

1. Initialize Qy (s, a) arbitrarily

2. Repeat

3. Choose a; from s; using an exploratory policy ¢
4 Take action a;, observe r, s;,1

5 Update Q — value function such that

Qir1(sp ap) « Qu(sp,a) + a [r + Ymgx Q:(s¢+1, ap) — Q¢(sy, at)]
6. t<t+1
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@ Q — Learning Example (cont.)

m Weassumethata =1,y = 0.5

-

Q(s12,2) < 0+1x[0+0.5%x0—-0]

o
o>o

0
mp o
0
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@ Q — Learning Example (cont.)

m Weassumethata =1,y = 0.5
O H
0 I 0

Q(s15,7) «0+1%[0+0.5x%x0—0]
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@ Q — Learning Example (cont.)

m Weassumethata =1,y = 0.5
0 0
e .

Q(sg, <) <0+ 1x[0+0.5%x0—0]
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@ Q — Learning Example (cont.)

m Weassumethata =1,y = 0.5
0

0 E 0

¥ -
0

0(s;, 1) «0+1X[-8+0.5x%x0—0]
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@ Q — Learning Example (cont.)

m The Q table after the first episode

states

20

actions

31
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@ Q — Learning Example (cont.)

m A second episode

o;-z-»z-i

o A o
0
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@ Q — Learning Example (cont.)

m Weassumethata =1,y = 0.5

T

o A o
0

Q(s12, 1) < 0+ 1 X [0+ 0.5 X max{-8,0,0,0} - 0]
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@ Q — Learning Example (cont.)

m Weassumethata =1,y = 0.5
0 0
sconmm

Q(s;,—) «0+1x[0+05x0—0]
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@ Q — Learning Example (cont.)

m Weassumethata =1,y = 0.5

0

0
0

uioi

Q(sg,—) <« 0+ 1x[0+05x0—0]
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@ Q — Learning Example (cont.)

m Weassumethata =1,y = 0.5

0
0 :
0

Q(sg,—) « 0+ 1X[8+0.5x%0—0]
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@ Q — Learning Example (cont.)

m The Q table after the second episode (blue — updated in first episode)

states

819 (10|11 |12 (13|14 |15(16| 17| 18| 19

20

actions

37
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@ Q — Learning Example (cont.)

m The Q table after a few episode

states

actions
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@ Q — Learning Example (cont.)

m  One of the optimal policies

states

OO 000000000000 00

actions
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@ Q — Learning Example (cont.)

= An optimal policy graphically

t &t ¢
i L il
t * 1t ¢

0.0 |1 0.0 0.0 [ 0.0 0.0 |0.0 0.0 | 0.0 0.0
0.0 0.0 0.0 0.0

o
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@ Q — Learning Example (cont.)

m  So we can find the this optimal way to go B

-8

0

-8
 §
0

_bf_H’H
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@ The Problem of Q — Learning

m Q - learning can require many thousands of training iterations to
converge in even modest-sized problems.

m Very often, the memory resourced required by this method become too
large.
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g Convergence of Q — Learning

m Casel : Deterministic MDP

m Condition for Convergence

m The immediate reward values are bounded.
|r(s,a)| < cforalls,a

m The agent selects actions in such a fashion that it visits every possible state-
action pair infinitely often.
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g Convergence of Q — Learning (cont.)

m Theorem1
m (Q,(s,a)convergesto Q*(s,a) asn — oo, for all s, a.

Proof.
Ap= rgngIQn(s, a) — Q*(s,a)l

10,01 (s, @) — Q*(s, )| = (r+ y max Qn(s',a')) — (r + Yy max Q(s’,a'))‘
=y ‘n}lg}x Q,(s',a") — H}lé}X Q(s', a’)‘
< yn}ﬁx|Qn(S',a') — Q(S':a’)l
< V?},fg?lQn(S”' a)—Q(s",a")|

|Qn+1(s,a) = Q7 (s, a)| < vAy,
|Qn+1(s,a) = Q*(s,a)| S y™Ag
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g Convergence of Q — Learning (cont.)

m Case?2 : Nondeterministic MDP

m Condition for Convergence
m Learning rate condition

(00]

Zat(s,a) =0

t=0

(00

ZQL? (s,a) < o

t=0
Forall (s,a) ES X A
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g Convergence of Q — Learning (cont.)

m Theorem 2
m (Q,(s,a) convergesto Q*(s,a) asn — oo, for all s, a.

Proof.
Omit. (Show in Appendix)
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g Summary

m Reinforcement learning addresses the problem of learning control
strategies for autonomous agents.

m  The reinforcement learning algorithms fit a problem setting known as a
Markov decision process (MDP).

m Q learning is one form of reinforcement learning in which the agent
learns an evaluation function over states and actions.

m  Q learning can be proven to converge to the correct Q function under
certain assumptions.

m  Reinforcement learning is closely related to dynamic programming
approaches to Markov decision processes.
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